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Abstract
While the pursuit of higher accuracy in deepfake
detection remains a central goal, there is an increas-
ing demand for precise localization of manipulated
regions. Despite the remarkable progress made in
classification-based detection, accurately localizing
forged areas remains a significant challenge. A
common strategy is to incorporate forged region an-
notations during model training alongside manip-
ulated images. However, such approaches often
neglect the complementary nature of local detail
and global semantic context, resulting in subopti-
mal localization performance. Moreover, an often-
overlooked aspect is the fusion strategy between lo-
cal and global predictions. Naively combining the
outputs from both branches can amplify noise and
errors, thereby undermining the effectiveness of the
localization.
To address these issues, we propose a novel ap-
proach that independently predicts manipulated re-
gions using both local and global perspectives. We
employ morphological operations to fuse the out-
puts, effectively suppressing noise while enhancing
spatial coherence. Extensive experiments reveal the
effectiveness of each module in improving the ac-
curacy and robustness of forgery localization.

1 Introduction
The rapid advancement of deep generative models [Good-
fellow et al., 2014; Ho et al., 2020], particularly deepfakes,
has led to an unprecedented level of realism and sophistica-
tion in synthetic media. When such technologies are mis-
used, the consequences are evident: the proliferation of mis-
information, reputational damage, and the erosion of public
trust. While existing deepfake detection models [Hu et al.,
2022; Shiohara and Yamasaki, 2022] have achieved notable
progress in classification, their ability to pinpoint tampered
regions remains limited. This deficiency hinders practical ap-
plications such as forensic analysis and content moderation,
where identifying manipulated pixels is critical for account-
ability and trustworthiness.

* Equal contribution.

Current deepfake localization methods exhibit three pri-
mary issues. First, local artifact detectors, exemplified by
CNN-based noise residual analysis [Hu et al., 2020] and
edge inconsistency modeling [Wu and Natarajan, 2019], suf-
fer from semantic blindness, failing to detect contextually
implausible manipulations. Second, global approaches that
leverage frequency spectrum analysis [Qian et al., 2020a]
or transformer-based contextual reasoning [Guillaro et al.,
2023] lack the granularity to pinpoint fine-grained spatial
anomalies. Third, hybrid frameworks [Wang et al., 2022] that
mechanically combine local/global features employ static fu-
sion strategies, neglecting dynamic adaptation to manipula-
tion characteristics across scales. Crucially, existing meth-
ods universally overlook mesoscopic artifacts—manipulation
traces manifesting at intermediate scales between pixel-level
distortions and semantic contradictions [Zhu et al., 2025].

To tackle these challenges, we propose a novel
morphology-optimized multi-scale fusion framework
for deepfake detection and localization, which synergizes
local forgery artifacts with mesoscopic semantic information.
First, we present a two-stream Local Facial Forgery Detection
and Location (LFDL) network that combines RGB and SRM
(Steganalysis Rich Model) features through cross-modality
consistency enhancement, effectively capturing fine-grained
forensic traces like noise and edge artifacts. Second, we pro-
pose a Mesoscopic Image Tampering Localization (MITL)
network that integrates frequency-enhanced representations
with adaptive multi-scale weighting to encode both object-
level and scene-consistency information. Third, we introduce
a Morphology-Driven Mask Fusion (MDMF) strategy that
intelligently merges LFDL and MITL localization results
through differential dilation/erosion operations, generating
reconciled global predictions.

Our key contributions are summarized as below:
• We propose a novel hybrid deepfake detection and lo-

calization framework that synergistically combines local
and mesoscopic forgery cues.

• We introduce a morphology-driven mask fusion strategy
that adaptively refines localization masks by dilating lo-
cal predictions and eroding mesoscopic predictions.

• We evaluate the effectiveness and robustness of the pro-
posed framework through extensive evaluation.



Table 1: Supplementary Data Registration for Deepfake Detection Model Training: Model Types, Methods, and Forgery Details

Model Type Method Forgery Types Fake/Mask Image Reference

Image Edit SBIs FaceSwap 18135 [Shiohara and Yamasaki, 2022]
Random combination FaceSwap 17728 -

GAN
Simswap FaceSwap 14999 [Chen et al., 2020]

MaskFaceGAN Face Attribute Editing 14999 [Pernuš et al., 2023]
Facedancer FaceSwap 20000 [Rosberg et al., 2023]

Diffusion Model BELM Diffusion Inversion 14674 [Wang et al., 2024]
SD-inpanting Inpanting 18347 [Podell et al., 2023]

2 Related Work
Deepfake Detection Deepfake detection techniques have
evolved significantly to counter the increasing sophistication
of forgery paradigms. Current methods can be broadly cat-
egorized into four main approaches based on the cues they
exploit: spatial domain [Liu et al., 2020; Nirkin et al., 2021;
Cao et al., 2022; Wang and Chow, 2023; Tan et al., 2023],
temporal domain [Yang et al., 2019; Gu et al., 2022; Yang
et al., 2023; Choi et al., 2024; Peng et al., 2024], frequency
domain [Qian et al., 2020b; Li et al., 2021; Miao et al., 2022;
Guo et al., 2023b; Tan et al., 2024], and data-driven meth-
ods [Dang et al., 2020; Zhao et al., 2021; Hu et al., 2022;
Huang et al., 2023; Guo et al., 2023a; Zhang et al., 2024a].
However, most existing methods focus solely on binary clas-
sification (real vs. fake), neglecting the localization of ma-
nipulated regions. This limitation not only restricts the prac-
tical utility of detection systems in forensic scenarios but also
weakens model interpretability, as the lack of localization
prevents both decision validation and forgery patterns anal-
ysis.
Deepfake Location Deepfake localization [Miao et al., 2024;
Miao et al., 2023; Zhang et al., 2024b] aims to identify ma-
nipulated regions through pixel-level analysis. Existing meth-
ods for deepfake localization primarily focus on either local
or global approaches to identifying manipulated regions. Lo-
cal location methods, such as ManTra-Net [Wu et al., 2019]
and TruFor [Guillaro et al., 2023], detect anomalies within
smaller regions of an image, focusing on fine-grained incon-
sistencies like noise and texture irregularities. Global loca-
tion methods, including F3-Net [Qian et al., 2020b], Ob-
jectFormer [Wang et al., 2022], and MVSS-Net [Chen et
al., 2021], consider the entire image or video frame, iden-
tifying larger-scale inconsistencies and manipulation artifacts
that span broader areas.

In contrast to existing methods, our approach integrates
both local, mesoscopic, and global location information, ap-
plying morphological fusion techniques to enhance the ro-
bustness and precision of deepfake localization.

3 Method
3.1 Overview
Our proposed framework is designed for robust deepfake de-
tection and localization by synergizing local forgery artifacts
with mesoscopic semantic information, to formulate a com-
prehensive and precise global prediction. The overall frame-
work, as depicted in Figure 1, comprises three main compo-

nents: the Local Facial Forgery Detection and Localization
(LFDL) network, the Mesoscopic Image Tampering Local-
ization (MITL) network, and the Morphology-Driven Mask
Fusion (MDMF) strategy.

3.2 Data Preparation
1) Generating Diverse Forgery Images and Masks: To
improve the model’s robustness to diverse manipulation pat-
terns, we construct a supplementary dataset by applying var-
ious forgery techniques to authentic images. Instead of rely-
ing on external datasets, we utilize the original real images
to generate manipulated samples using representative meth-
ods spanning traditional image editing, GAN-based synthe-
sis, and diffusion models. This process not only increases the
diversity of forgery types but also provides paired masks for
supervised learning. The details of the constructed dataset are
shown in Table 1. In total, 118,882 manipulated images were
generated using various forgery techniques, each accompa-
nied by a corresponding mask.

2) Data Preprocessing Strategy: To tackle the challeng-
ing task of facial forgery detection, we employ two distinct
models, each is designed to analyze different forgery scales
(e.g., facial attribute and background context), respectively.
Correspondingly, two preprocessing pipelines are adopted to
prepare the input for these models, ensuring alignment with
their respective detection strategies. The LFDL module fo-
cuses on analyzing local facial regions, and its preprocessing
pipeline emphasizes face localization and adaptive cropping
to highlight detailed facial features. In contrast, the MITL
module leverages global image context, and its preprocessing
approach uses the entire original image and corresponding
forgery mask without any facial cropping. By pairing these
models with tailored preprocessing techniques, we simultane-
ously utilize localized and global cues, enhancing the robust-
ness and comprehensiveness of the overall detection system.

In the LFDL module, face detection is applied to local-
ize the face region in the image. If the detected face occu-
pies a moderate portion of the entire image, the face region is
cropped; otherwise, the original image is fed directly into the
model. This adaptive cropping strategy highlights local fa-
cial details while preventing excessive cropping of small face
regions, thereby preserving key information.

In contrast, the MITL module avoids face detection or
cropping altogether. Instead, the entire original image and
its corresponding forgery mask are directly input into the
model. By preserving both global structure and background,
this method leverages the overall context of the image in



Figure 1: Overview of our proposed framework. (1) The LFDL module employs a two-stream architecture (RGB and SRM streams) and
utilizes cross-modality consistency mechanisms for manipulation detection. (2) The MITL module processes frequency-enhanced features
through dual encoders to achieve semantic-level tampering identification. (3) The MDMF module combines the dilated mask from LFDL
(enhancing edge coherence) and the eroded mask from MITL (suppressing over-prediction) through a union operation to achieve compre-
hensive localization.

addition to facial cues. This preprocessing pipeline empha-
sizes global information, complementing the localized focus
of LFDL, and together they enhance the completeness and
robustness of facial forgery detection.

3.3 LFDL: Local Facial Forgery Detection and
Location with Two-Stream Architecture

Deepfake manipulations often introduce subtle and spatially
confined artifacts in key facial regions, such as the eyes,
mouth, and contours. These fine-grained inconsistencies are
difficult to capture using coarse global features alone. To ad-
dress this, we employ a patch-based strategy wherein facial
regions are first detected and cropped, then processed by a
dedicated Two-Stream Network [Shuai et al., 2023] designed
to capture both RGB image and SRM noise residuals forgery
cues at a local level.

The architecture comprises two parallel branches, classifi-
cation and localization, each augmented by four key compo-
nents that jointly exploit cross-modal consistency and patch-
level context, as described below.

1) Cross-Modality Consistency Enhancement (CMCE):
Let F l

rgb ∈ RCl×Hl×Wl and F l
srm ∈ RCl×Hl×Wl denote the

features extracted from the l-th layer of the RGB and SRM
streams, respectively. CMCE computes a cross-modal consis-
tency map by measuring the cosine similarity at each spatial
location:

Corr(fr
i , f

h
i ) =

fr
i · fh

i

∥fr
i ∥2∥fh

i ∥2
, i ∈ {1, . . . ,HlWl} (1)

where fr
i , f

h
i ∈ RCl×1×1 are the corresponding spatial

vectors from the RGB and SRM streams. This correlation
is used to refine both modalities:

F ′
r = ReLU(Fr+Corr⊙Fh), F ′

h = ReLU(Fh+Corr⊙Fr)
(2)

Finally, the enhanced representation is obtained by sum-
ming the two refined features:

F l
cmce = F ′

r + F ′
h (3)

This mechanism reinforces cross-modal interactions, al-
lowing the network to exploit complementary forgery clues
present in both spatial and frequency domains.

2) Local Forgery Guided Attention (LFGA): To mitigate
the common failure case where networks overly rely on un-
manipulated regions, LFGA explicitly guides attention to-
ward potentially tampered areas. It first constructs a self-
attention map from the localization branch’s feature Fl as:

Attij = Softmax(g(Fl)i · g(Fl)j) (4)

where g(·) is a learnable linear projection and i, j index
spatial locations. This attention map highlights patch-wise



similarity and forgery salience. The attention is then used to
recalibrate the classification feature Fc:

F ∗
c = ReLU(Reshape(h(Fc)⊗ Att) + Fc) (5)

where h(·) is a projection function and ⊗ denotes matrix
multiplication. LFGA is applied at multiple scales to progres-
sively refine spatial focus and promote forgery-aware classi-
fication.

3) Multi-Scale Patch Feature Fusion (MPFF): Forgery
traces often vary in spatial granularity. MPFF fuses features
across multiple resolution levels to capture both coarse and
fine-level inconsistencies. For the localization stream, high-
resolution intermediate features Fml ∈ Rc2×h2×w2 and low-
resolution features Fl ∈ Rc1×h1×w1 are partitioned into cor-
responding non-overlapping patches. Within each patch Pk,
an intra-patch consistency is computed as:

f
(k,j)
ml = Tanh

(
θ(pjk) · θ(fk

l )

c

)
(6)

where θ(·) is a shared projection and c is a normalization
constant. The same strategy is applied in the classification
stream to generate f

(k,j)
mc , allowing joint multi-scale fusion

and consistency modeling. This patch-wise alignment helps
bridge semantic gaps across scales while preserving spatial
fidelity.

4) Semi-Supervised Patch Similarity Learning (SSPSL):
Most public deepfake datasets lack pixel-level annotations
of manipulated regions, which hinders effective supervision
of the localization branch. To overcome this, SSPSL adopts
a semi-supervised approach to generate pseudo ground-truth
masks based on patch similarity analysis.

First, facial landmarks are used to detect the nose position,
around which a rectangular area is heuristically designated as
the manipulated region. Patches from this area are treated as
pseudo-forged samples, while patches from authentic images
serve as real references.

Given the feature map Ff ∈ RC×H×W , we compute co-
sine similarity between each patch feature ff

ij and the average
features of real (fr) and forged (fa) patches:

Sfr
ij =

ff
ij · fr

∥ff
ij∥2∥fr∥2

, Sff
ij =

ff
ij · fa

∥ff
ij∥2∥fa∥2

(7)

Each patch is then assigned a binary label indicating
whether it is more similar to real or forged examples:

Mij =

{
0, Sfr

ij − Sff
ij ≥ 0

1, Sfr
ij − Sff

ij < 0
(8)

This results in a pseudo mask M that approximates ma-
nipulated regions, which is further converted into patch-level
labels. For a patch Pk, its label Mk is defined by the average
value of its corresponding pixels:

Mk =

{
0, avg(MPk

) = 0

1, avg(MPk
) > 0

(9)

The localization branch is supervised using a binary cross-
entropy loss between predicted mask logits M̂k and pseudo
labels Mk:

Lloc = − 1

h1w1

h1w1∑
k=1

[
Mk log M̂k + (1−Mk) log(1− M̂k)

]
(10)

Meanwhile, the classification branch is optimized with a stan-
dard binary cross-entropy loss:

Lcls = − [y log ŷ + (1− y) log(1− ŷ)] (11)

Overall Training Objective: The total loss integrates both
classification and localization terms for joint optimization:

Ltotal = Lcls + Lloc (12)

This formulation allows the network to learn fine-grained
forgery localization without explicit ground-truth annota-
tions, enabling more scalable and flexible training under
semi-supervised settings.

3.4 MITL: Mesoscopic Image Tampering
Localization with Mesorch

Existing image tampering localization methods primarily rely
on microscopic features, such as image RGB noise, edge sig-
nals, or high-frequency features, to detect tampering traces.
However, these methods fail to effectively capture the macro-
scopic semantic information of tampering, leading to insuffi-
cient localization accuracy in complex scenes and difficulty
in handling tampering related to semantics. To address this
challenge, we apply the Mesorch [Zhu et al., 2025] archi-
tecture to extract both microscopic details and macroscopic
semantic information, and dynamically adjust the importance
of different features through an adaptive weighting module.

The framework mainly consists of three parts: Frequency-
Enhanced Image Representation, Dual Feature-Guided Mask
Generation, and Adaptive Multi-Scale Weighting, as de-
scribed below.

1) Frequency-Enhanced Image Representation (FEIR):
The FEIR module initiates spectral decomposition using Dis-
crete Cosine Transform (DCT) to amplify mesoscopic-level
artifacts. Given an input RGB image x ∈ RH×W×3, we de-
compose it into high-frequency (xh) and low-frequency (xl)
components through DCT filtering, retaining spatial dimen-
sions H × W × 3 for both components. These frequency-
enhanced features are concatenated with the original image
along the channel axis to form enhanced representations:

Ih = Concat(x, xh) ∈ RH×W×6,

Il = Concat(x, xl) ∈ RH×W×6
(13)

Ih and Il are enhanced representations used for fur-
ther processing. This hybrid representation bridges pixel-
level anomalies (microscopic) with semantic contradictions
(macroscopic), enabling the detection of subtle manipulation
traces that span hierarchical levels.



2) Dual Feature-Guided Mask Generation (DFGMG):
This module is a key component of the whole architecture.
It processes high-frequency and low-frequency enhanced im-
ages separately to capture fine-grained details and macro-
scopic semantics, respectively. The outputs from these en-
coders are then decoded to generate initial predictions, which
will be combined in the next module to produce the final
mask.

The high-frequency enhanced image Ih is processed by
the Local Feature Encoder, a CNN-based architecture specif-
ically engineered to capture fine-grained local details. These
details play a critical role in the detection of microscopic ar-
tifacts within the image. Concurrently, the low-frequency en-
hanced image Il is processed by the Global Feature Encoder,
a Transformer-based framework designed to extract macro-
scopic semantics and global contextual information. Such in-
formation is essential for comprehending object-level manip-
ulations in the image.

Each encoder outputs feature maps at four distinct scales:

{Ls1 , Ls2 , Ls3 , Ls4} = LocalFeatureEncoder(Ih),
{Gs1 , Gs2 , Gs3 , Gs4} = GlobalFeatureEncoder(Il)

(14)

where Clocal and Cglobal denote the total number of output
channels at each scale i for the local and global encoders,
respectively. These feature maps are then processed by the
corresponding decoders to generate initial predictions of ma-
nipulated regions:

Mli = LocalFeatureDecoder(Lsi),

Mgi = GlobalFeatureDecoder(Gsi)
(15)

where Mli and Mgi are the local and global prediction
masks, respectively, with a shape of H/4×W/4×1 for each
scale i.
3) Adaptive Multi-Scale Weighting (AMW): This Mod-
ule dynamically optimizes the fusion of multi-scale repre-
sentations by adjusting the importance of features across
different scales. Unlike traditional methods that assume
equal weighting, this module identifies and emphasizes criti-
cal scales while suppressing redundant or noisy information,
thereby enhancing localization precision and robustness.

The module takes three inputs: the original RGB image
x ∈ RH×W×3, high-frequency components xh ∈ RH×W×3,
and low-frequency components xl ∈ RH×W×3, both derived
via DCT. These inputs are concatenated to form a composite
representation Iconcat = {x, xh, xl} ∈ RH×W×9.

Then the weighting network will produce a tensor W ∈
RH

4 ×W
4 ×8, where each element reflects the relative impor-

tance of predictions from local and global features across four
scales (totaling eight branches). Formally:

W = WeightingModule(Iconcat) (16)

The final prediction mask M is computed through pixel-
wise weighted fusion of concatenated multi-scale predictions
Mmerge ∈ RH

4 ×W
4 ×8, followed by upsampling to the original

resolution:

Mmerge = Concat(Ml1 ,Mg1 ,Ml2 ,Mg2 ,Ml3 ,Mg3 ,Ml4 ,Mg4)
(17)

M = Resize

 8∑
j=1

Wj ⊙Mmergej , H,W

 (18)

where ⊙ denotes element-wise multiplication. This adap-
tive fusion ensures spatial coherence while focusing on re-
gions critical for mesoscopic artifact detection.

3.5 MDMF: Morphology-Driven Mask Fusion for
Comprehensive Forgery Localization

To leverage the complementary strengths of LFDL and
MITL, we introduce a Morphology-Driven Mask Fusion
strategy that combines their outputs for more accurate local-
ization.

The LFDL module first detects and crops the facial region,
then performs fine-grained forgery localization. While effec-
tive in identifying facial manipulations, the cropping process
may discard edge information, making the model sensitive to
local artifacts. As a result, the output masks may have irregu-
lar boundaries or fragmented areas. Based on our observation
that ground truth masks are generally smooth and coherent,
we apply a dilation operation to the LFDL mask MLFDL to
smooth edges and connect nearby manipulated regions:

MLFDL ⊕B = {z ∈ Z2 | (B)z ∩MLFDL ̸= ∅} (19)

B ⊆ Z2 is a structuring element, here we set it as a 5 × 5
matrix of ones. (B)z = {b + z | b ∈ B} represents the
translation of B by displacement z.

In contrast, the MITL module directly detects manipulated
regions on the full image, effectively capturing non-facial
forgeries such as hair alterations. However, the image resiz-
ing process during training may lead to loss of fine details,
potentially resulting in ambiguous and over-extended predic-
tions. To reduce this effect, we apply an erosion operation to
the MITL mask MMITL, which helps suppress over-prediction
while retaining mesoscopic perception capabilities:

MMITL ⊖B = {z ∈ Z2 | (B)z ⊆ MLFDL} (20)
Finally, we take the union of the two processed masks to

obtain the final localization result Mfinal:

Mfinal = (MLFDL ⊕B) ∪ (MMITL ⊖B) (21)
This morphology-based fusion compensates for the limi-

tations of both modules: dilation recovers LFDL’s lost edge
coherence, while erosion suppresses MITL’s over-prediction
tendencies. Their union combines fine-grained localization
with consistency analysis, yielding more accurate manipula-
tion detection.

4 Experiments
4.1 Experimental setup
Metrics. The performance of our model is evaluated using
several key metrics. For detection, we report Area Under the
ROC Curve (AUC). For spatial localization, we employ the
F1 Score and Intersection over Union (IoU) to assess the ac-
curacy of the localized tampered regions.



Figure 2: Examples of the DDL-I dataset.Multi-Face Scenario refers to an image with multiple faces where one or more faces have been
altered. Single-Face Scenario involves altering a local region within an image that contains only one face.

The F1 Score balances precision and recall, where preci-
sion measures the accuracy of predicted tampered pixels, and
recall reflects the completeness of detection. It is computed
as follows:

F1-Score =
2 · Precision · Recall
Precision + Recall

(22)

Where:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(23)

Here, TP denotes the correctly predicted tampered pix-
els, FP represents incorrectly predicted tampered pixels, and
FN refers to missed tampered pixels.

IoU measures the overlap between the predicted and
ground truth manipulation regions. It is calculated as:

IoU =
Area of Intersection

Area of Union
(24)

or equivalently

IoU =
TP

TP + FP + FN
(25)

Finally, the overall performance is summarized by a Final
Score, which is the average of the three metrics:

Final score = (AUC + IoU + F1)/3 (26)

Final score provides a comprehensive evaluation by com-
bining detection and localization performance into a single
metric.

Implementation Details. Our approach consists of two pri-
mary models: LFDL and MITL, which are trained sepa-
rately. The LFDL model utilizes an Xception backbone and is
trained on 8 × A100 GPUs with a learning rate of 5×10−4, a
batch size of 76, and for 30 epochs. The MITL model, which
combines a Segformer-B3 and ConvNeXt-Tiny hybrid back-
bone, is trained on 8 × RTX 4090 GPUs. It is trained with a
learning rate of 10−4, a batch size of 10, and for 30 epochs.
Following training, the models are fused during the inference
stage to produce the final prediction. This modular training
strategy allows each model to optimize performance by lever-
aging appropriate hardware for its own training, resulting in
improved performance and efficiency.

Dataset. We evaluate our model on the Deepfake Detection
and Localization Image (DDL-I) dataset [Miao et al., 2025],
which contains over 1.5 million samples with pixel-level an-
notations. DDL-I covers 61 latest deepfake methods across
four forgery types: face swapping, face reenactment, full-face
synthesis, and face editing. It encompasses both single-face
and multi-face scenarios, providing a diverse range of forgery
contexts. Additionally, pixel-level forgery region masks are
provided, enabling precise localization of tampered areas.

4.2 Experimental results
Table 2 presents the results of our ablation study, aimed at
evaluating the contribution of different modules and fusion
strategies in the proposed framework. We report Detection
AUC, F1-score, IoU for localization accuracy, and a Final
Score that aggregates the classification and localization qual-
ity.

LFDL is a patch-based forgery detection and localization
module, which performs both binary classification and spa-
tially localizes forgery artifacts. It focuses on fine-grained
and local inconsistencies, especially in manipulated facial re-
gions. Despite its localized input, it achieves strong per-
formance with an AUC of 0.9790 and a respectable IoU of
0.5981, indicating its ability to precisely detect local manip-
ulations.

MITL represents a standalone end-to-end deepfake detec-
tion model that takes the whole image as input and produces a
full-resolution forgery mask. This model provides coarse but
global localization information. When used alone, it yields
a significantly lower Final Score of 0.2349, possibly due to
lack of fine-grained localization capacity.

LFDL + MITL corresponds to a naive combination strat-
egy where the detection confidence is derived from the LFDL
module, while the global mask from the MITL module is di-
rectly used for localization. This combination improves the
Final Score to 0.3200, suggesting that LFDL’s strong classifi-
cation signal can benefit global prediction. However, without
careful integration, the spatial coherence remains limited.

LFDL + MITL + Mask Naive Fusion applies a simple
yet effective fusion strategy: the final localization mask is
obtained by a pixel-wise logical OR operation between the
LFDL module’s patch-based local mask and the MITL mod-
ule’s global mask. This ensures that any region predicted as
fake by either model is retained. This strategy significantly



Table 2: Ablation Study. LFDL is a two-stream architecture focusing on local feature-based detection. MITL leverages the Mesorch backbone
to extract both local artifacts and global semantic features. Mask Naive Fusion directly adds the output masks from LFDL and MITL, treating
a pixel as fake if either branch flags it. MDMF further refines this fusion using morphological operations to enhance coherence and suppress
noise. The final score is the average of AUC, F1-score, and IoU.

Method Detection AUC F1-score IoU Final Score
LFDL 0.9790 0.6840 0.5981 0.7497
MITL - - - 0.2349
LFDL + MITL - - - 0.3200
LFDL + MITL + Mask Naive Fusion 0.9790 0.7598 0.6657 0.8015
LFDL + MITL + MDMF 0.9790 0.7759 0.6902 0.8150

boosts both the F1-score (to 0.7598) and IoU (to 0.6657),
highlighting the complementary strengths of the two mod-
els—local detail sensitivity and global coverage.

LFDL + MITL + MDMF further applies post-processing to
refine the fused mask using morphological operations (e.g.,
dilation, erosion). This enhances mask smoothness and re-
moves small noisy regions, achieving the highest perfor-
mance with a Final Score of 0.8150, F1-score of 0.7759, and
IoU of 0.6902.

In summary, the LFDL module offers precise local
forgery detection, while the MDMF module complements
it by providing global contextual information. Their fu-
sion—especially through naive logical integration and mor-
phological refinement—yields substantial gains in both de-
tection and localization, underscoring the value of combining
local and global cues.

4.3 Visualization
As shown in Figure 3, our method achieves precise forgery
localization by combining the strengths of LFDL and MITL.
The LFDL module accurately detects facial manipulations
but suffers from irregular edges and fragmented regions,
while the MITL module effectively identifies peripheral ar-
tifacts (e.g., hair region anomalies) yet tends to over-expand
boundaries. To address these issues, we innovatively adopt
MDMF, which performs dilation to LFDL masks to smooth
fragmented areas and erosion to MITL masks to suppress
boundary over-extension, followed by an intersection oper-
ation for final localization. Experimental results demonstrate
that this strategy significantly improves boundary precision
and structural coherence of the detection masks.

5 Conclusion
In this work, we address the challenging task of deepfake lo-
calization by proposing a dual-branch framework that sep-
arately models local and global manipulation cues. While
existing methods often overlook the importance of semantic-
aware localization and suffer from ineffective fusion strate-
gies, our approach explicitly leverages both fine-grained lo-
cal details and global semantic context. By applying mor-
phological fusion to the independently predicted masks, we
suppress noisy activations and improve spatial coherence.
Extensive experiments demonstrate the effectiveness of our
method, showing that it achieves more accurate and robust
localization results compared to existing approaches. This

Images LFDL MITL LFDL + MITL
LFDL + MITL 

+ MDMF

Figure 3: Visualization results of our methods. We apply dilation
to LFDL masks and erosion to MITL masks, then combine them to
achieve precise and coherent forgery localization.

work highlights the importance of multi-perspective model-
ing and adaptive fusion in advancing the state-of-the-art in
deepfake forensics.
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